
 
www.iaset.us                                                                                                                                                     editor@iaset.us 

 

A NONPARAMETRIC DISCRIMINANT VARIABLE-ELIMINATION A LGORITHM 

FOR CLASSIFICATION TO TWO POPULATIONS 

S. PADMANABAN 1 & MARTIN L. WILLIAM 2 
1NIRRH Field Unit, Indian Council of Medical Research, KMC Hospital, Chennai, India 

2Department of Statistics, Loyola College, Chennai, India 

 

ABSTRACT 

This paper provides a nonparametric discriminant variable-elimination algorithm to discriminate two multivariate 

populations and an associated optimal decision rule for membership-prediction. This is an alternative to the             

'forward-stepwise' approach recently proposed for the same classification problem by Padmanaban and William (2016).    

As in the referred work, the present work relaxes the 'equal variance-covariance matrices' condition traditionally imposed 

and develops a discrimination-classification procedure by excluding variables that do not contribute to the 'discrimination',    

one-by-one in a backward-stepwise manner. The exclusion of variables in the discriminant is determined on the basis of 

least 'discriminating ability' as reflected in 'difference' between the distributions of the discriminant in the two populations. 

A decision-rule for classification or membership-prediction with a view to maximize correct predictions, balancing 

between ‘sensitivity’ and ‘specificity’, is provided. The proposed alogorithm is applied to develop an optimal discriminant 

for predicting preterm labour among expecting mothers in the city of Chennai, India and its performance is compared with 

logistic regression and also with the forward-stepwise discriminant algorithm of the same authors. 
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1. INTRODUCTION  

The problem of discriminating the objects belonging to two populations and the related issue of effectively 

classifying members to the two has existed for many decades now. It is a known fact that, applying the technique under a 

non-parametric setting needs the variance-covariance matrices of the two populations to be equal, even though this 

condition is not required for multivariate normal populations. Variables are included in the discriminant based on a 

comparison of the means in the two populations. Also, classification of a member to one of the two populations is based on 

the distances of the member’s discriminant value from the means of the discriminant in the two populations.  

The aim of the present work is to develop an algorithm for obtaining an ideal discriminant, starting with a ‘large’ 

set of candidate variables and pruning the variables one-by-one to obtain a parsimonious model having ‘good’ ability to 

‘classify’ objects to the two populations. This is a modification to the ‘variable selection algorithm’ for constructing the 

ideal discriminant, introduced by Padmanaban and William (2016). Like the ‘variable selection algorithm’ referred, the 

‘variable elimination algorithm’ being proposed in this paper also has a wider scope of application than the traditional 

discriminant analysis. 

In practical situations where observations of multiple variables are involved, joint normality or equality of 

variance-covariance matrices is not assured. For multivariate normal datasets, the equality of the variance-covariance can 

International Journal of Applied Mathematics 
& Statistical Sciences (IJAMSS) 
ISSN(P): 2319-3972; ISSN(E): 2319-3980 
Vol. 5, Issue 6, Oct - Nov 2016; 7-16 
© IASET 



8                                                                                                                                               S. Padmanaban & Martin L. William 

 
Impact Factor (JCC): 2.6305                                                                                                                     NAAS Rating 3.19 

be tested and if affirmed, one can apply the traditional linear discriminant function; if equality is negated, quadratic 

discriminant function can be used. If the data are not from multivariate normal populations, the distribution-free Fisher’s 

linear discriminant function can be used, but there is no easy procedure available for testing the equality of             

variance-covariance matrices. Many practitioners ‘assume’ equality and proceed. This gap between theory and practice has 

remained unfilled for long.  

However, recently Padmanaban and William (2016) proposed a discrimination-classification procedure in a 

distribution-free context without imposing the condition of equal variance-covariance matrices. Specifically, Padmanaban 

and William (2016) provided a model-building algorithm for selecting variables that are to be fed into the discriminant 

function. That algorithm may be termed ‘forward-model-building’ process in line with the term usually employed in 

building predictive models. In this paper, we propose a ‘backward’ process of obtaining the ideal discriminant by starting 

with a number of candidate variables and ‘eliminating’ the variables with least predictive capacity one-by-one until we are 

left out with only those variables that are well-capable of discriminating the two populations. The theoretical framework 

for this work has been developed by Padmanaban and William (2016). Just as the ‘forward’ process, the proposed 

‘backward’ process can be applied without the conditions that restrict the traditional approaches. 

Interesting developments to the classical theory of discriminant analysis have been made by a number of authors 

in the past many decades. Different approaches to develop discriminant models focus on identifying the important 

variables for discriminating the populations. Some of the early contributions in this area include those of Chang (1983) 

who proposed using principal components for separating a mixture of two multivariate normal distributions and that of 

Bensmail and Celeux (1996) who considered Gaussian discriminant analysis through eigen-value decomposition.               

A stepwise algorithm using 'Bayesian Information Criterion' was developed by Murphy et al. (2010) following Raftery and 

Dean (2006) who proposed a similar approach for model-based clustering. The above approaches are parametric and are 

restricted in their scope of applications.  

Other contributions in this area extended discriminant analysis to non-parametric settings in different directions. 

Nonparametric discriminant analysis with nonlinear classifiers was proposed by Hastie et al. (1994) to handle situations 

with a large number of input variables. Nonlinear discriminant analysis via kernel approach, theoretically close to support 

vector machines, was given by Baudat and Anouar (2000).Nonparametric discriminant analysis with adaptation to     

nearest-neighbour classification was developed by Bressan and Vitria (2003).Chiang and Pell (2004) proposed combining 

genetic algorithms with discriminant analysis for identifying key variables. In these works, a matter of major concern was 

to identify the variables that would be effective in discriminating the populations under consideration. 

This paper takes a different approach from that of the above-mentioned works present in the literature on          

two-population discriminant analysis while adhering to the basic spirit and mathematical objective of classical discriminant 

analysis. We attempt to provide a backward process as an alternative method to the forward process developed by 

Padmanaban and William (2016) for building an effective discriminant model. A variable-elimination algorithm is 

proposed to obtain the discriminant model by removing variables that least contribute to the discrimination-ability          

one-by-one in a backward-stepwise manner. For a discussion on the 'model performance' measure to evaluate the 

classification ability of the discriminant model and the decision rule for identifying the optimal cut-off point for 

classification, reference is made to the paper of Padmanaban and William (2016). 
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Hence, the Objectives of the Present Work Are: 

• To present a variable-elimination algorithm for discriminating two populations and an easy-to-apply procedure for 

classification of objects. 

• To apply the algorithm to a biomedical phenomenon and compare its classification-performance with that of 

logistic regression and the forward-stepwise discriminant algorithm. 

This paper is organized as follows: Following this introductory section, a review of the basic theoretical 

framework recently introduced in Padmanaban and William (2016) is given in Section 2. The new variable-elimination 

algorithm to build an efficient discriminant model is outlined in Section 3. As an application of this methodology, the 

prediction of 'pre-term labour' in pregnant women is considered in Section4. This is based on a sample of 200 women who 

delivered babies in the Department of Obstetrics and Gynaecology, Government Kilpauk Medical College and Hospital, 

Chennai, India, during the five-month period of 7th May, 2015 to 7th October, 2015. 

2. A REVIEW OF THE RECENTLY INTRODUCED PROCEDURE 

Consider two populations π1 and π2 whose relative sizes are given by the proportions p1 and p2.The objects in the 

two classes are to be discriminated using multidimensional data on a random vector, say, X = (X1, X2,..., Xp)
T. When there 

is a 'significant' difference between the distributions, classification or membership-prediction of objects becomes pertinent 

and the ‘correctness’ or ‘incorrectness’ of classifications turns out to be a matter of concern.  

Denote the mean-vectors of X in the two populations as µ1 = E1(X) and µ2 = E2(X) and the variance-covariance 

matrices of X in the two populations be Σ1 and Σ2. From Padmanaban and William (2016), we have the following 

theoretical results:  

• For a random vector X and another random object W, the relationship between the unconditional and conditional 

mean vectors and variance-covariance matrices is given by 

 E(X) = EW[EX|W (X)] and V(X) = EW{V X|W(X)} + V W{ EX|W(X)}                                  (2.1)  

• The overall variance-covariance matrix of the combined population is given by 

 Σ = p1Σ1+ p2Σ2+ p1(1–p1) µ1. µ1
T +p2(1–p2) µ2. µ2

T – p1 p2(µ1 µ2
T + µ2 µ1

T )                                 (2.2) 

In Discriminant Analysis, the multivariate observations (X) are transformed to univariate observations (Y) by 

considering linear combinations of the Xi's. For any linear combination Y = ℓTX, where ℓ is a p x 1 vector of constants, the 

means of Y in the two populations are µ1Y = ℓT
µ1 andµ2Y = ℓT

µ2 and in the combined population it is given by µY = p1ℓ
T
µ1 + 

p2ℓ
T
µ2. And, the variance of Y in the combined population is given by V(Y) = ℓT Σ ℓ. 

The linear combination which maximizes the (squared) distance between µ1Y and µ2Y relative to the variability of 

Y in the combined population helps in discriminating the two groups in the most 'optimal' manner. The 'distance-

maximizing' linear combination of the Xi's is the 'optimum discriminant function' based on X. We call it 'X-based optimal 

discriminant' and is given by  

 Y = (µ1 – µ2)
T 
Σ

– 1X                                                     (2.3) 

Suppose X(s) be a subset of the variables used to build the optimal discriminant. Denote the mean vectors of X(s) in 
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the two populations as µ1(s) and µ2(s) and the 'overall' variance-covariance matrix of X(s) as Σ(s). The X(s)-based optimal 

discriminant is  

 Y(s)= (µ1(s) – µ2(s))
T
Σ(s)

– 1X(s)                                                              (2.4) 

Typically, these parameters are replaced by the sample estimates in practice. Computing the variable Y(s) for all 

members in both the samples, the performance of the X(s)-based optimal discriminant is measured by the two sample 

Kolmogorov-Smirnov Statistic based on the Y(s) measurements. Denoting the (empirical) cumulative distribution functions 

of Y(s) for the two populations as F1(s)(·) and F2(s)(·), the performance measure is given by 

 KS(s) = ( )|)()(|max )(2)(1 yFyF ss
y

−                        (2.5) 

Given two subvectors X(s1) and X(s2), the optimal X(s1)-based discriminant is said to be 'more efficient' than the 

optimal X(s2)-based discriminant if KS(s1)> KS(s2). If there exists a random subvector X(s*) for which KS(s*)> KS(s) for every 

other random subvector X(s), then the corresponding optimal discriminant Y(s*) is the 'most efficient' discriminant. 

However, obtaining the 'most efficient' discriminant is computationally prohibitive in the presence of a very large 

number of predictor variables (i.e.) in case of very high dimension of the underlying random vector X. This is true of every 

model-building situation involving a large number of predictor variables and different algorithms are therefore suggested to 

'build' improved models sequentially instead of considering 'all possible' models or identifying the 'most efficient'.  

With this view, Padmanaban and William (2016) introduced a ‘forward model-building’ algorithm to build a 

‘sequence’ of discriminant models, starting with a single variable and ‘select’ variables one-by-one evaluating their ability 

to ‘add’ to the discriminatory ability of the model. In the same spirit, the next section presents a model building algorithm 

to build a 'sequence' of discriminant models starting with the full set of observables, and ‘eliminating’ one-by-one those 

variables that do not contribute substantially to the discriminatory ability of the discriminant, ultimately leading to an 

efficient discriminant model. 

3. THE PROPOSED VARIABLE-ELIMINATION ALGORITHM  

The proposed algorithm evaluates each candidate ‘input’ variable in a sequential manner towards constructing the 

optimal discriminant function by ‘pruning’ the variables that do not contribute adequately to the discriminatory ability of 

the model. This ‘backward’ process of variable-elimination is a ‘reversal’ of the ‘forward’ process of variable-selection 

introduced by Padmanaban and William (2016).Variable-selection for discriminating between two populations has been 

addressed by Habbema and Hermans (1977) who considered selection of variables for Gaussian discriminant analysis on 

the basis of F-Statistics and error rates and by Pfeiffer (1985) who considered smoothing factors of kernel functions for 

nonparametric discriminant analysis with different criteria like distances, error rates and density-ratios.  

The present work proposes a different process of ‘eliminating’ variables in a backward-stepwise manner. The 

algorithm starts by considering ‘all’ the candidate variables initially and proceeds by removing one input variable at a time 

on the basis of ‘least’ differentiation between the distributions of the discriminant scores in the two populations, as 

measured by the two sample Kolmogrov-Smirnov (KS) statistic used for comparison of two distributions. The exact 

backward process is described below. 

Let X1, X2,.., Xp be the candidate input variables and denote the vector (X1, X2,.., Xp) as X. 
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Step 0: With all the candidate variables X, the X-based discriminant and the corresponding scores are obtained for 

each individual record in the data. Let the value of the Kolmogorov-Smirnov Statistic for this ‘full’ model be denoted 

KS(0). The significance of this statistic is evaluated at a desired level of significance. 

Step 1: Removing one variable at a time, ‘p’ discriminants Y(~1), Y(~2),..., Y(~p), (where Y(~i) is the discriminant 

based on all variables except Xi), and their corresponding scores are obtained for each record in the data. Let the 

Kolmogorov-Smirnov Statistic for Y(~i) be denoted as KS(~i).  

If  

KS(~i)> KS(~j) for every j ≠ i and KS(~i)≥ KS(0) 

Then among the individual variables considered for elimination one a one-at-time, Xi is the least effective 

discriminator between the two populations. That is, leaving out Xi leads to a higher discrimination ability (or) at least does 

not reduce the ability of the model compared to the stage where Xi is part of the discriminant function. So, at the end of 

Step 1, Xi gets eliminated. In contrast, if  

KS(~i)> KS(~j) for every j ≠ i but KS(~i)< KS(0) 

Then Xi does not leave the model, nor any of the remaining Xj’s leave as its exit leads to reduced discriminatory 

ability and the model building stops with all the ‘p’ candidate variables present.  

Step 2: If X i were eliminated in Step 1, we remove one additional variable at a time and obtain (p–1) 

discriminants, in which the removed variables are (X1,Xi),...., (Xi-1,Xi), (Xi+1,Xi),...., (Xp,Xi). Denote the discriminants as 

Y(~1~,i), Y(~2,~.i),..., Y(~i-1,~i), Y(~i+1,~i),... Y(~p,~i) and the corresponding Kolmogorov-Smirnov statistics as KS(~1~,i), 

KS(~2,~i),...,KS(~i-1,~i), KS(~i+1,~i),..., KS(~p,~i). If for some 'm',  

KS(~m~,i)> KS(~j~,i) for every j ≠ m, and KS(~m,~i) ≥ KS(~i), 

Then Xm leaves the model in Step 2. In contrast, if  

KS(~m,~i)> KS(~j,~i) for every j ≠ m, but KS(~m,~i) < KS(~i), 

Then Xm does not leave the model, nor any of the remaining Xj's leave, as its exit leads to reduced discriminatory 

ability and the model building stops with (p – 1) input variables present. Clearly no other variable can leave further. 

At every subsequent step that is considered, one more additional variable leaves provided the maximum KS value 

at that step exceeds or equals the maximum KS value of the previous step. If it is less than the previous maximum, the 

process stops. When the process stops at the (k+1)th step, the optimal discriminant function is the one obtained in the kth 

step with the maximum KS value, leading to significant and maximum discrimination between the two populations. We 

denote the final subset of variables reached in this process as X(S*) and the 'final' efficient discriminant as Y(s*). 

The classification or prediction rule, the ‘explanation’ to the KS statistic and also the suggestion to use the 

‘Reliability Function’ for computing the KS Statistic are provided in the paper of Padmanaban and William (2016) wherein 

the proposal for forward model-building process was given. 
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4. APPLICATION OF THE ALGORITHM TO PREDICT PRETERM LABOUR 

Preterm Labour  

The recent lifestyle changes, nature of jobs and food habits have resulted in many health-related disorders among 

youngsters. In the case of married women, this leads to pregnancy-related issues and complications at the time of delivery. 

The birth of a baby ahead of the normal delivery time is a serious issue affecting the growth milestones of the child and 

possibly creating other life-long physical disabilities. For definitions and statistical information related to the phenomenon 

of preterm labour, details of the potential associated factors – lipid profiles, study design and sample size considered for the 

study, we refer to Padmanaban and William (2016). 

Objective: This study aims to relate the above factors to preterm labour through the ‘backward’ discriminant 

model building algorithm developed in this paper. We wish to identify the significant factors that are associated to the risk 

of preterm labour. 

A sample of the data on the six variables listed under 'Potential factors' along with the birth outcome (Term labour 

= 1, sPTB = 2) is given below: 

Table 1 

Record # X1 (BMI) X2 (AFI) X3 (TC) X4 (TGL) X5 (HDL) X6 (LDL) Outcome 
1 12.6 14.2 274 168 76 114 1 
2 19.3 9.5 276 288 89 186 2 
3 12.6 14.2 235 168 76 114 1 
4 12.6 14.2 274 168 76 114 1 
5 19.7 9.6 310 298 89 186 2 

 
We apply the variable-elimination algorithm developed in this paper and get the following results. 

Step 0: The KS statistic for the ‘full’ model with all the variables considered is found to be 

KS(0) = 0.980. The KS value of 0.980 is found to be statistically significant. 

Step 1: The KS statistics for models leaving out one variable at a time are  

KS(~X1) = 0.980, KS(~X2) = 0.960, KS(~X3) = 0.960, KS(~X4) = 0.920, KS(~X5) = 0.960, KS(~X6) = 0.980 

X1 and X6 are found to be the least effective discriminators. As there is a tie on which one to leave out, we apply 

domain knowledge and decide to remove X1 at the end of Step 1. 

Step 2: In this step we get 

KS(~X1,~X2) = 0.960, KS(~X1,~X3) = 0.960, KS(~X1,~X4) = 0.920, KS(~X1,~X5) = 0.960, KS(~X1,~X6) =0.980 

X6 leaves the model in the second step. We note that X6 was a competitor to X1 for leaving at the end of Step 1. 

Step 3: In this step we get 

KS(~X1,~X6,~X2) =0.980, KS(~X1,~X6,~X3) = 0.950, KS((~X1,~X6,~X4) = 0.940, KS(~X1,~X6,~X5) =0.980 

X2 and X5 are found least effective and as tie-breaker, we remove X5 (HDL Cholestrol) as we have already found 

LDL Cholestrol (X6) to be an ineffective discriminator.  

Step 4:We get KS(~X1,~X6,~X5,~X2) = 0.960, KS(~X1,~X6,~X5,~X3) = 0.930, KS((~X1,~X6,~X5,~X4) = 0.940 
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As all the KS statistics are less than the previous step KS maximum value, the variable-elimination algorithm 

stops with three variables being eliminated in the order of X1, X6 and X5.This concludes that X2, X3, X4 are the effective 

discriminators between pre-term labour population and the term labour population. The model has a KS value of 0.980. 

We have tried an alternative from Step 3 by removing X2 instead of X5. In this case, the Step 4 KS values are 

found to be 

KS(~X1,~X6,~X2,~X3) = 0.910, KS(~X1,~X6,~X2,~X4) = 0.880, KS((~X1,~X6,~X2,~X5) = 0.960 leading to a model with X3, X4 and 

X5 with same KS value 0.980.  

However, we have found from domain experts that X2 (AFI) is more associated with labour complications than X5 

(HDL Cholestrol) and moreover, our forward algorithm also selected X2 but not X5. 

Thus, the 'Efficient Discriminant' obtained at the end of Step 3 of our algorithm is: 

 Y = 0.1853*AFI − 0.0343*TC − 0.0228*TGL                                          (4.1) 

The estimated means of Y in the two populations are found to be 

µ1Y = −11.3522, µ2Y = − 14.6097 

and the 'efficient cut-point' is y0 = −12.578 

Here, '1' denotes 'term labour group' and '2' denotes 'sPTB group'. 

Membership-Prediction Rule: If 'y' is the value of the 'Efficient Discriminant' Y of (4.1) for an individual, then the 

prediction rule is as follows: 

Classify individual to: 



GroupLaboureTerm

GroupLabourTerm

Pr 578.12

578.12

−≤
−>

yif

yif

 

We observe form (4.1) that, increased AFI, lower TC and lower TGL indicate the likelihood of normal term labour 

for a woman. Accordingly, we find that lower AFI, higher TC and higher TGL increase the risk for preterm labour for a 

woman. This result is same as the one we got in the ‘forward’ model building approach discussed by Padmanaban and 

William (2016). 

Comparison with Logistic Regression Model: 

Denoting 'preterm labour outcome' as the outcome of interest, when we built a logistic regression model using the 

stepwise method of model building, we get the following results.  

Step 1: TC entered with very high significance and with a positive coefficient. 

Step 2: TGL entered with very high significance and with a positive coefficient. 

The model building process stopped in two steps and resulted in the following logit equation: 

 








− p

p

1
log = − 59.154 + 0.119*TC + 0.108*TGL                       (4.2) 

where 'p' is the probability of preterm labour. From equation (4.2), we find that higher TC and higher TGL leads 



14                                                                                                                                               S. Padmanaban & Martin L. William 

 
Impact Factor (JCC): 2.6305                                                                                                                     NAAS Rating 3.19 

to higher risk of preterm labour, which is in agreement with the conclusion of the discriminant model (4.1). However, the 

KS for the logit model is found to be 0.950 which is less than the KS obtained for the 'Efficient Discriminant Model'. Thus, 

the new method performs better than binary logistic regression method in predicting preterm labour among pregnant 

women. 

We note that, while logistic regression identifies two factors TC and TGL, our model identifies one more 

important factor AFI. In this context we refer to the article of Weissmann-Brenner et al. (2009) in which it was stated that 

the mean AFI differs significantly between PPROM (PTB) cases and the normal cases. Our discriminant model confirms 

that AFI is an important discriminator between preterm and term labour cases and that lower AFI points to the risk of 

preterm labour. The finding here supports the discovery of the medical research team of Brenner et al. 

Even if it may be argued that the new ‘discriminant’ approach needs to be applied to many more situations 

wherein logistic regression is applied to decide its ‘higher’ effectiveness in prediction of binary outcomes, the present work 

points out that this approach is a promising alternative to logistic regression model. It is possible that, in good many 

applications, this approach is also capable of performing better than logistic regression approach and could also discover 

some important discriminators that are not identified by the latter.  
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