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ABSTRACT

This paper provides a nonparametric discriminanabée-elimination algorithm to discriminate two hivariate
populations and an associated optimal decision fole membership-prediction. This is an alternatit@ the
‘forward-stepwise' approach recently proposed lier same classification problem by Padmanaban atlicaivvi(2016).
As in the referred work, the present work relades'equal variance-covariance matrices' conditiaditionally imposed
and develops a discrimination-classification prasecby excluding variables that do not contribatéhte 'discrimination’,
one-by-one in a backward-stepwise manner. The sixeiuof variables in the discriminant is determiredthe basis of
least 'discriminating ability' as reflected in fdience' between the distributions of the discraninin the two populations.
A decision-rule for classification or membershiggiction with a view to maximize correct predictiorbalancing
between ‘sensitivity’ and ‘specificity’, is provide The proposed alogorithm is applied to developgimmal discriminant
for predicting preterm labour among expecting mistlie the city of Chennai, India and its performam compared with

logistic regression and also with the forward-stisgvdiscriminant algorithm of the same authors.
KEYWORDS: Classification, Discriminant, Variable-Eliminatiokiplmogorov-Smirnov Statistic

1. INTRODUCTION

The problem of discriminating the objects belongbogtwo populations and the related issue of effett
classifying members to the two has existed for mdegades now. It is a known fact that, applyingtd@hnique under a
non-parametric setting needs the variance-covagianatrices of the two populations to be equal, etreugh this
condition is not required for multivariate normabpulations. Variables are included in the discrimmin based on a
comparison of the means in the two populationso Atfassification of a member to one of the twodagions is based on

the distances of the member’s discriminant valoenfthe means of the discriminant in the two poborest

The aim of the present work is to develop an atborifor obtaining an ideal discriminant, startinghna ‘large’
set of candidate variables and pruning the vargablee-by-one to obtain a parsimonious model ha\gogd’ ability to
‘classify’ objects to the two populations. Thisasmodification to the ‘variable selection algorithfior constructing the
ideal discriminant, introduced by Padmanaban anliliani (2016). Like the ‘variable selection algonthreferred, the
‘variable elimination algorithm’ being proposed tinis paper also has a wider scope of applicatiam tihe traditional

discriminant analysis.

In practical situations where observations of rpldtivariables are involved, joint normality or eliyaof

variance-covariance matrices is not assured. Fdtivadate normal datasets, the equality of theiarae-covariance can
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8 S. Padmanaban & Martin L. William

be tested and if affirmed, one can apply the tiaukl linear discriminant function; if equality isegated, quadratic
discriminant function can be used. If the datarsefrom multivariate normal populations, the disftion-free Fisher’s
linear discriminant function can be used, but théeno easy procedure available for testing thealiyu of

variance-covariance matrices. Many practitionessuane’ equality and proceed. This gap between yheudt practice has

remained unfilled for long.

However, recently Padmanaban and William (2016)pgsed a discrimination-classification procedureain
distribution-free context without imposing the cdimh of equal variance-covariance matrices. Speadlf, Padmanaban
and William (2016) provided a model-building algbm for selecting variables that are to be fed ih® discriminant
function. That algorithm may be termed ‘forward-rebbuilding’ process in line with the term usualynployed in
building predictive models. In this paper, we prep@ ‘backward’ process of obtaining the idealrifisinant by starting
with a number of candidate variables and ‘elimimgtihe variables with least predictive capacitg4dry-one until we are
left out with only those variables that are welpable of discriminating the two populations. Thedtetical framework
for this work has been developed by PadmanabanVéitichm (2016). Just as the ‘forward’ process, theposed

‘backward’ process can be applied without the ctima that restrict the traditional approaches.

Interesting developments to the classical theorgisgdriminant analysis have been made by a numbautbors
in the past many decades. Different approacheset®ldp discriminant models focus on identifying tineportant
variables for discriminating the populations. Soofighe early contributions in this area includesthaf Chang (1983)
who proposed using principal components for sejpaya mixture of two multivariate normal distriboris and that of
Bensmail and Celeux (1996) who considered Gaussiaoriminant analysis through eigen-value decomnifuosi
A stepwise algorithm using 'Bayesian Informatioitéion’ was developed by Murpley al. (2010) following Raftery and
Dean (2006) who proposed a similar approach forefibdsed clustering. The above approaches are paiarand are

restricted in their scope of applications.

Other contributions in this area extended discrantranalysis to non-parametric settings in diffeidirections.
Nonparametric discriminant analysis with nonlinekassifiers was proposed by Hastieal. (1994) to handle situations
with a large number of input variables. Nonline@cdminant analysis via kernel approach, theoadiiicclose to support
vector machines, was given by Baudat and AnouafQRBonparametric discriminant analysis with adtptea to
nearest-neighbour classification was developed fag&an and Vitria (2003).Chiang and Pell (2004ppsed combining
genetic algorithms with discriminant analysis fdemtifying key variables. In these works, a mattemajor concern was

to identify the variables that would be effectimediscriminating the populations under consideratio

This paper takes a different approach from thathef above-mentioned works present in the literatme
two-population discriminant analysis while adhertaghe basic spirit and mathematical objectivela$sical discriminant
analysis. We attempt to provide a backward pro@sssan alternative method to the forward processldped by
Padmanaban and William (2016) for building an dffec discriminant model. A variable-elimination atghm is
proposed to obtain the discriminant model by remgvvariables that least contribute to the discration-ability
one-by-one in a backward-stepwise manner. For auslison on the 'model performance' measure to atealthe
classification ability of the discriminant model darthe decision rule for identifying the optimal @ff point for

classification, reference is made to the paperaginfanaban and William (2016).
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Hence, the Objectives of the Present Work Are:

e To present a variable-elimination algorithm foradiminating two populations and an easy-to-applycpdure for
classification of objects.

* To apply the algorithm to a biomedical phenomenad aompare its classification-performance with tbat
logistic regression and the forward-stepwise disttrant algorithm.

This paper is organized as follows: Following tligroductory section, a review of the basic theiosdt
framework recently introduced in Padmanaban andiaffil (2016) is given in Section 2. The new variablieination
algorithm to build an efficient discriminant modsl outlined in Section 3. As an application of thi®thodology, the
prediction of 'pre-term labour' in pregnant womgrdnsidered in Section4. This is based on a sanfif#80 women who
delivered babies in the Department of Obstetriad @gnaecology, Government Kilpauk Medical Collegel alospital,
Chennai, India, during the five-month period 8fNay, 2015 to  October, 2015.

2. AREVIEW OF THE RECENTLY INTRODUCED PROCEDURE

Consider two populations; andzn, whose relative sizes are given by the proportmrsnd p.The objects in the
two classes are to be discriminated using multidisienal data on a random vector, say, X 3, ..., Xp)T. When there
is a significant'difference between the distributions, classificatis membership-prediction of objects becomes ipenti

and the ‘correctness’ or ‘incorrectness’ of clasaifons turns out to be a matter of concern.

Denote the mean-vectors of X in the two populatiasg; = E;(X) and u, = Ex(X) and the variance-covariance

matrices of X in the two populations g and X,. From Padmanaban and William (2016), we have theving
theoretical results:

» For a random vector X and another random objedh®/relationship between the unconditional and itmml

mean vectors and variance-covariance matricevéndiy

E(X) = Ea[Expw (¥)] @nd V(X) = Ea{V (0} + Vud Expu(X)} (2.1)
* The overall variance-covariance matrix of the cameli population is given by

= = piZot PZat po(d—p) pa pa’ (1) ma. k2" — Py Pa(pa 2’ o g’ ) (2.2)

In Discriminant Analysis, the multivariate obseigas (X) are transformed to univariate observati@vis by
considering linear combinations of thgsXFor any linear combination Y&X, wherel is a p x 1 vector of constants, the
means of Y in the two populations arg = {'p; andi,y = €'y, and in the combined population it is giveniyy= p,€ "y, +

p.L "1, And, the variance of Y in the combined populai®given by V(Y) =¢" £ ¢.

The linear combination which maximizes the (squpadistance betweeyy andp,y relative to the variability of
Y in the combined population helps in discrimingtithe two groups in the most 'optimal' manner. Tdistance-

maximizing' linear combination of the'¥is the 'optimum discriminant function' basedXorWe call it 'X-based optimal
discriminant' and is given by

Y= (u—p2)' =X (2.3)

Suppose ¥, be a subset of the variables used to build thenaptdiscriminant. Denote the mean vectors gf i
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the two populations ag ) and pys) and the ‘overall' variance-covariance matrix @fj #sX«). The Xg-based optimal

discriminant is

Y o (Mas)— o) Z(s) Xs) (2.4)

Typically, these parameters are replaced by theplagstimates in practice. Computing the variable f¥r all
members in both the samples, the performance oiXiljbased optimal discriminant is measured by the tampe
Kolmogorov-Smirnov Statistic based on thg, Yheasurements. Denoting the (empirical) cumuladis&ribution functions

of Y, for the two populations as §f-) and k(-), the performance measure is given by
KSe = man(| Fie(Y) = Fyy (Y)l) (2.5)

Given two subvectors ) and Xs,), the optimal X, ybased discriminant is said to be 'more efficidmdn the
optimal Xs,rbased discriminant if KSy> KSs,) If there exists a random subvectggpfor which KSs+> KS for every

other random subvector then the corresponding optimal discriminag)¥s the 'most efficient' discriminant.

However, obtaining the 'most efficient' discrimib@icomputationally prohibitive in the presenceaofery large
number of predictor variables (i.e.) in case ofpMaigh dimension of the underlying random vectoiTHis is true of every
model-building situation involving a large numbépoedictor variables and different algorithms #rerefore suggested to

'build' improved models sequentially instead ofsidaring 'all possible’ models or identifying theost efficient'.

With this view, Padmanaban and William (2016) idwwoed a ‘forward model-building’ algorithm to buikd
‘sequence’ of discriminant models, starting withiagle variable and ‘select’ variables one-by-onalgating their ability
to ‘add’ to the discriminatory ability of the modéh the same spirit, the next section present®detbuilding algorithm
to build a 'sequence’ of discriminant models sigrtvith the full set of observables, and ‘elimingtione-by-one those
variables that do not contribute substantially He tliscriminatory ability of the discriminant, ultately leading to an

efficient discriminant model.
3. THE PROPOSED VARIABLE-ELIMINATION ALGORITHM

The proposed algorithm evaluates each candidgtetimariable in a sequential manner towards coesitng the
optimal discriminant function by ‘pruning’ the valiles that do not contribute adequately to theridiscatory ability of
the model. This ‘backward’ process of variable-@hation is a ‘reversal’ of the ‘forward’ process wdriable-selection
introduced by Padmanaban and William (2016).Vaeeglection for discriminating between two popwiasi has been
addressed by Habbema and Hermans (1977) who coedidelection of variables for Gaussian discrimiramalysis on
the basis of F-Statistics and error rates and yffef (1985) who considered smoothing factors efriel functions for

nonparametric discriminant analysis with differeniteria like distances, error rates and densitipsa

The present work proposes a different process lohiating’ variables in a backward-stepwise manrigre
algorithm starts by considering ‘all’ the candidatgiables initially and proceeds by removing omguit variable at a time
on the basis of ‘least’ differentiation between ftistributions of the discriminant scores in theotwopulations, as
measured by the two sample Kolmogrov-Smirnov (K&ligtic used for comparison of two distributiod$he exact

backward process is described below.

Let X3, Xz,.., X, be the candidate input variables and denote thevex;, X,,.., X;) asX.
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Step 0:With all the candidate variable§ the X-based discriminant and the corresponding scorestaained for
each individual record in the data. Let the valfighe Kolmogorov-Smirnov Statistic for this ‘fullhodel be denoted

KS). The significance of this statistic is evaluated desired level of significance.

Step 1: Removing one variable at a time, ‘p’ discriminalisy, Y(2..., Y- (Where Y. is the discriminant
based on all variables except),Xand their corresponding scores are obtainedefmh record in the data. Let the

Kolmogorov-Smirnov Statistic for ;) be denoted as K$.
If
KSwiy> KS) for every j# i and KS.j> KS,

Then among the individual variables considered dimination one a one-at-time,; Xs the least effective
discriminator between the two populations. Thateaying out Xleads to a higher discrimination ability (or) east does
not reduce the ability of the model compared todtage where Xs part of the discriminant function. So, at thel eof

Step 1, Xgets eliminated. In contrast, if
KS)> KS) for every j# i but K§- < KS,
Then X does not leave the model, nor any of the remainifgleave as its exit leads to reduced discriminator

ability and the model building stops with all the ¢andidate variables present.

Step 2: If X; were eliminated in Step 1, we remove one additioraiable at a time and obtain (p-1)
discriminants, in which the removed variables a&eXy),...., (%.1,Xi), (Xis1,Xi),-..., (%,X;). Denote the discriminants as
Yamiy Yez—iper Yeia-p Yisr-ip Yep~y and the corresponding Kolmogorov-Smirnov statistias K@.i- i,
KS(2,-ip- s KSiet iy KS(iv,~ips s K§—p iy If for some 'm’,

KSm-y> KS-j for every j#m, and K@, -iy> KS,
Then X, leaves the model in Step 2. In contrast, if
KS(~m'~i)> KSHFi) for every J?é m, but K$~m,~i)< KSH)’

Then X, does not leave the model, nor any of the remaiXifgyleave, as its exit leads to reduced discrimiyato

ability and the model building stops with (p — daput variables present. Clearly no other variabie leave further.

At every subsequent step that is considered, orre auiditional variable leaves provided the maxim(@value
at that step exceeds or equals the maximum KS Hltlee previous step. If it is less than the poegi maximum, the
process stops. When the process stops at the"{lstdp, the optimal discriminant function is the aieained in the 'k
step with the maximum KS value, leading to sigmifit and maximum discrimination between the two jetmns. We

denote the final subset of variables reached mplocess as, and the ‘final' efficient discriminant agyY.

The classification or prediction rule, the ‘expldon’ to the KS statistic and also the suggestionuse the
‘Reliability Function’ for computing the KS Statistare provided in the paper of Padmanaban andawil(2016) wherein

the proposal for forward model-building process gaen.
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4. APPLICATION OF THE ALGORITHM TO PREDICT PRETERM  LABOUR

Preterm Labour

The recent lifestyle changes, nature of jobs awd foabits have resulted in many health-relatedrdess among
youngsters. In the case of married women, thissléagbregnancy-related issues and complicatiotfseatime of delivery.
The birth of a baby ahead of the normal delivenyetiis a serious issue affecting the growth milestoof the child and
possibly creating other life-long physical disai@k. For definitions and statistical informatiadated to the phenomenon
of preterm labour, details of the potential assecidactors — lipid profiles, study design and skngize considered for the

study, we refer to Padmanaban and William (2016).

Objective: This study aims to relate the above factors tdepne labour through the ‘backward’ discriminant
model building algorithm developed in this papee Wish to identify the significant factors that associated to the risk

of preterm labour.

A sample of the data on the six variables listedeurPotential factors' along with the birth outeoferm labour

=1, sPTB = 2) is given below:

Table 1
Record # | X1 (BMI) | X, (AFI) | X3(TC) | X4 (TGL) | X5 (HDL) | Xg (LDL) | Outcome
1 12.6 14.2 274 168 76 114 1
2 19.3 9.5 276 288 89 186 2
3 12.6 14.2 235 168 76 114 1
4 12.6 14.2 274 168 76 114 1
5 19.7 9.6 310 298 89 186 2

We apply the variable-elimination algorithm deveddpn this paper and get the following results.
Step 0: The KS statistic for the ‘full’ model with all theariables considered is found to be

KSq) = 0.980. The KS value @.980is found to be statistically significant.

Step 1:The KS statistics for models leaving out one vdeiat a time are

KSx1) = 0.98Q KS-x2) = 0.960, K$.x3) = 0.960, KS.xay = 0.920, KSxs) = 0.960, KS.x6) = 0.980

X, and X are found to be the least effective discriminatéssthere is a tie on which one to leave out, pelya

domain knowledge and decide to removeaXthe end of Step 1.
Step 2:In this step we get
KS(x1,-x2) = 0.960, K@x1,-x3) = 0.960, K@.x1,-xa) = 0.920, K@.x1,-x5) = 0.960, K@.x1,-xs) =0.980
Xgleaves the model in the second step. We note thaeX a competitor to pfor leaving at the end of Step 1.
Step 3:In this step we get
KS(-x1,-x6,~x2) =0.98Q KS-x1,-x6,-x3)= 0.950, KQ-x1,-x6,-x4y= 0.940, KS.x1 -x6,~x5)=0.980

X, and X are found least effective and as tie-breaker,ameove X% (HDL Cholestrol) as we have already found

LDL Cholestrol (%) to be an ineffective discriminator.

Step 4We get KSxi,-x6,-x5,-x2)= 0.960, K@.x1,-x6-x5,-x3)= 0.930, K-x1,-x6-x5,-x4y= 0.940
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As all the KS statistics are less than the previstep KS maximum value, the variable-eliminatiogoaithm
stops with three variables being eliminated in ahgger of X, X¢ and X.This concludes that ;X X3, X4 are the effective

discriminators between pre-term labour populatiod the term labour population. The model has a &8es0f0.98Q

We have tried an alternative from Step 3 by remgvka instead of X. In this case, the Step 4 KS values are

found to be

KS(~X1,~X6,~X2,~X3): 0910, K$~Xl,~X6,-X2,~X4): 0880, K§~Xl,~X6,~X2,~X5): 0.960 |eading to a model Wltfh,XX4 and
X5 with same KS valu8.98Q

However, we have found from domain experts tha(A€1) is more associated with labour complicatidmsn X

(HDL Cholestrol) and moreover, our forward algomitialso selected Xbut not .
Thus, the 'Efficient Discriminant' obtained at tved of Step 3 of our algorithm is:
Y = 0.1853*AFI — 0.0343*TC - 0.0228*TGL (4.2)
The estimated means of Y in the two populationd@uad to be
pmy = —11.3522p,¢ = — 14.6097
and the 'efficient cut-point' iy -12.578

Here, '1' denotes 'term labour group' and '2' aen'sPTB group'.

Membership-Prediction Ruldf 'y' is the value of the 'Efficient Discriminant' Y @f.1) for an individual, then the

prediction rule is as follows:

{ TermLabour Group if y >— 12578
Classify individual to: L T €TermLabourGroupif y <- 12578

We observe form (4.1) that, increased AFI, loweralr@d lower TGL indicate the likelihood of normairtelabour
for a woman. Accordingly, we find that lower AFligher TC and higher TGL increase the risk for pmatéabour for a
woman. This result is same as the one we got irfftherard’ model building approach discussed by fadaban and
William (2016).

Comparison with Logistic Regression Model:

Denoting 'preterm labour outcome' as the outconiatefest, when we built a logistic regression niagéng the

stepwise method of model building, we get the feltgy results.
Step 1:TC entered with very high significance and withasitive coefficient.
Step 2: TGL entered with very high significance and witha@sitive coefficient.

The model building process stopped in two stepsrasdlted in the following logit equation:

Iog(lij = - 59.154 + 0.119*TC + 0.108*TGL (4.2)

- P
where 'p' is the probability of preterm labour. firequation (4.2), we find that higher TC and high&L leads
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to higher risk of preterm labour, which is in agremt with the conclusion of the discriminant mo@kll). However, the
KS for the logit model is found to be 0.950 whisHéss than the KS obtained for the 'Efficient Biemant Model'. Thus,
the new method performs better than binary logistigression method in predicting preterm labour rgnpregnant

women.

We note that, while logistic regression identifizgo factors TC and TGL, our model identifies onereno
important factor AFI. In this context we refer teetarticle of Weissmann-Brennet al. (2009) in which it was stated that
the mean AFI differs significantly between PPRONI B cases and the normal cases. Our discriminanteinmonfirms
that AFI is an important discriminator between prat and term labour cases and that lower AFI pdimtthe risk of

preterm labour. The finding here supports the disopof the medical research team of Brereteal.

Even if it may be argued that the new ‘discriminagproach needs to be applied to many more sitosti
wherein logistic regression is applied to decidetitgher’ effectiveness in prediction of binarytcomes, the present work
points out that this approach is a promising atiéwve to logistic regression model. It is possibilat, in good many
applications, this approach is also capable ofgpering better than logistic regression approach andd also discover

some important discriminators that are not idestifby the latter.
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